
Total Installation Awareness

Robert Grant
The University of Texas at Austin

Dept. of Electrical and Computer Engineering
bgrant@mail.utexas.edu

John Thywissen
The University of Texas at Austin

Dept. of Computer Sciences
jthywiss@cs.utexas.edu

ABSTRACT
Users often install applications from untrusted sources. Al-
catraz is a system that provides isolation of a system from
potentially untrustworthy user programs. However, we find
performance and functionality concerns with Alcatraz. Nev-
ertheless, Alcatraz demonstrates the feasibility of one-way
isolation of user programs. During a port of Alcatraz to a
modern commodity operating system, Mac OS X, we ob-
serve that the various security goals present in such a sys-
tem can be at odds with each other. This conflict impedes
implementation of features such as isolation. We propose
an alternative that preserves system adaptability properties
while still serving the trusted platform needs of DRM. A
substantially different approach to implementing one-way
isolation appears feasible, and is left for future work.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, invasive software

General Terms
Design, Performance, Security

Keywords
Alcatraz, digital rights management, etrace, Mac OS X, sys-
tem call interposition

1. INTRODUCTION
In the course of normal computer usage, users often install
applications from untrusted sources. Users currently have
very poor control over the application installation process,
and often have very little knowledge of all the side effects
of running an installer. This is bad from the perspectives
of both system manageability and system security: at least
the user cannot know all the effects of running an installer,
and at worst an installer has malicious and untracked side
effects.

Course project:
C S 380L, Advanced Operating Systems
Fall 2008
Prof. M. Dahlin
The University of Texas at Austin

Alcatraz is a software system developed at the Secure Sys-
tems Lab of Stony Brook University for protecting the in-
tegrity of a system from untrusted programs. It does this
by allowing users run suspect software in a Secure Execution
Environment (SEE) which attempts to provide one-way iso-
lation through copy-on-write semantics.

More precisely, changes made outside the SEE are visible in-
side, but changes made inside the SEE are not visible outside
until the user explicitly commits those changes to the base
file system. Modifications which cannot be easily captured
with copy-on-write file semantics are generally disallowed,
though a few special exceptions are made.

Alcatraz is written as a plugin to an earlier system called
Etrace [19] which supports system call interposition and sys-
tem call rewriting on Linux. Etrace is well designed and ar-
chitected and isolates system-dependent code for portability,
though Alcatraz itself does not follow suit.

We make several contributions in this paper. First, in Sec-
tion 2, we empirically evaluate the functionality and perfor-
mance of Alcatraz in its native Linux environment (CentOS
4.6). Then, in Section 3 we present an in-depth study of
the difficulties of providing similar isolation in Mac OS X
v10.5. Finally, we summarize other work related to Alca-
traz in Section 6, we outline possible future work in Section
7, and we we conclude in Section 8. More detailed experi-
mental results are placed in Appendix A for the interested
reader.

2. EVALUATION OF ALCATRAZ
In this section we empirically evaluate the functionality and
performance of Alcatraz in its native Linux environment.
Throughout, we examine our results in the context of the
stated goals and claims of Alcatraz as outlined in the AC-
SAC 2003 paper [15].

The stated functionality goals of Alcatraz include

• application and operating system transparency,
• security yet application-friendliness,
• convenience and user-friendliness,
• preservation of system integrity (moreso than system

confidentiality), and
• one-way isolation.

Some more precise technical claims made in the paper are

1

that

• Etrace (system call interposition) imposes from 10-
100% overhead and
• Alcatraz (secure execution environment) imposes be-

low 20% overhead

for the applications they studied.

2.1 Experimental Design

Hardware Setup. All experiments are performed in a Cen-
tOS 4.6 VMware virtual machine allocated 512 MB of mem-
ory with an ext3 file system. The underlying system is a
MacBook Pro running Mac OS X v10.5.5 with a 2.6 GHz
Intel Core 2 Duo processor and 4 GB of RAM.

Functionality. To evaluate the functionality of Alcatraz
we use a qualitative methodology in the form of a series
of case studies. In Case Study 1 (A.1), we attempt to an-
swer Functionality Questions 1 and 2 from Section ?? by
running small, targeted tests by hand. In Case Study 2
(A.2), we study these same questions using the more exten-
sive POSIX File System Test Suite [11]. Finally, in Case
Study 3 (2.3.3) we run real applications in a SEE and study
how well (and how successfully) they do so. We have rel-
egated more lengthy summaries of these case studies along
with detailed results to Appendix A; however, we analyze
and summarize our findings in Section 2.3.

Performance. To evaluate the performance of Alcatraz we
use a quantitative experimental approach. Specifically, we
use a 22 factorial design and test each independent vari-
able for statistical significance at α = 0.05 using Analysis
of Variance (ANOVA). If ANOVA shows there to be a sig-
nificant effect, we determine which levels of a factor differ
significantly using the Tukey-Kramer HSD test. The facto-
rial design allows us the increase the power of our statistical
tests by blocking on confounding variables (such as file size
and record size) which would otherwise affect our results
for our interesting independent variable, System Type a.k.a.
system.

In both Experiment 1 and Experiment 2 an important in-
dependent variable is System Type = {bare, etrace, al-
catraz}. In these experiments, bare means “interposition or
isolation”, etrace means“System call interposition only”, and
alcatraz means “etrace + full copy-on-write semantics and
isolation”. In Experiment 1 we have the dependent variable
Performance (MB/s), and in Experiment 2 we have a
similar dependant variable Execution Time (s).

Additionally in Experiment 1 we add the following indepen-
dent variables:

File Size (kB) = {64, 128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, 131072, 262144, 524288}

Record Size (kB) = {4, 8, 16, 32, 64}
Load Type = {Write, Re-write, Read, Re-Read, Random

Read, Random Write}

More concretely, for this experiment we use the Iozone Filesys-
tem Benchmark Revision 3.311 [18] and have it generate the
above Files Sizes, Record Sizes, and Load Types. We actu-
ally had it generate record sizes all the way from 4 Bytes to
File Size for each file size, but for ANOVA we chose a com-
mon subset of record sizes so we would have uniform sample
sizes. This experiment addresses Performance Question 1
from Section ??.

For Experiment 2, we instead add the independent variable
Application = {bzip, tar, make, make-install} to examine
more“representative” load types. This experiment addresses
Performance Question 2.

2.2 Validity and Reproducibility
To leave no question about the interval validity of our case
studies and experiments, we have been extremely explicit
about what questions we are trying to answer and which
evaluations address which questions. Concerning the exter-
nal validity of our tests, we rely only on the difference in
performance of various loads and applications and try not
to rely on or place too much emphasis on any particular run-
times, though we do show some for illustrative purposes.

Our evaluations should also be very repeatable. We have
listed all of our “by hand” tests in full in Appendix A, and
used the publicly available Iozone and POSIX File System
Test Suites for our automated tests. Alcatraz 0.6.4 [20] and
Etrace 0.8.2 [21] are available from their authors’ web sites at
Stony Brook University. Even our environment, a CentOS
4.6 VMware image, was downloaded from [9], though we
have added gnome-desktop and a few packages required by
Etrace and Alcatraz.

2.3 Results
2.3.1 Case Study 1

The full results from this case study can be seen in Ap-
pendix A.1. This study was very illuminating, and we have
found many examples of common operations that do not
work (or do not work as expected), and a few ways of vi-
olating one-way isolation and affecting the integrity of the
system outside the SEE.

First, some common file modifications do not work. Many
operations that affect file metadata are broken, such as chmod,
chown, chgrp. When these are attempted on files a user
does not create himself within the SEE they are either ig-
nored or explicitly “Operation not permitted.”

Most file creation and deletion operations are supported, and
a file mv is committed as a delete and a create. However, mv-
ing an existing directory does not work—“cannot move. . . :
Is a directory.” The authors do note in their paper that
a simple copy-on-write implementation does not extend to
directory, but they offer solutions. These do not seem to be
in the implementation.

Hard links cause Alcatraz a great deal of difficulty. When
creating a hard link to a pre-existing file from within an
SEE, Alcatraz appears to let you, and even lets you commit.
However, it appears the file it creates is just a copy of the
“link”-ed file, as stat shows that neither the original nor the

2

“link” actually have more than 1 link, and changes to one
aren’t reflected in both, neither before nor after the commit.

Alcatraz leaks around the edges in even some simple cases.
For example, after creating a file “foo” in the SEE, when
performing an ls -l, an error message “ls: foo: No such file
or directory” is produced immediately before listing the di-
rectory correctly. ls also fails to list the / directory and the
/dev, the latter probably because of efforts to restrict access
to devices within the SEE. Some subitems of both are ac-
cessible however. You can stat /, stat /dev, ls /etc and
cat /dev/urandom just fine, but you cannot, for example,
cat /dev/random.

To note one last inconsistency, commit does not always work
predictably. The stated commit policy is to discard changes
“if the files modified by the isolated process were neither read
nor written by outside processes since the instant the files
were first accessed by the isolated process”. However, in the
“conflict1” test this holds, while in the “conflict2” test the
SEE changes overwrite the conflicting external changes. In
a more devious example, Alcatraz appeared to let us write to
/proc/sys/fs/file-max, but the changes failed on commit.

In addition to these transparency/consistency/user-friendliness
problems, we have also managed to break one-way isola-
tion. Alcatraz is successful at stopping many things that
would thwart this, such as writing to sockets (network or
UNIX), communicating with system services such as dbus,
and killing outside processes (such as Alcatraz itself!). How-
ever, using an existing FIFO, writing to that FIFO from
within an SEE is immediately visible to a reader outside
the SEE. Additionally, though a malicious user cannot kill
outside processes, he can renice them.

That being said, Alcatraz is research software and is not
expected to have a bulletproof implementation. However,
the large number of special-case ways we found to break
transparency and even isolation makes this solution seem
very inelegant, and it leads us to believe that it would be
very hard to get completely right. At least the authors have
not proved through this implementation that this is the right
solution to the problem.

2.3.2 Case Study 2
The full results from this case study can be seen in Appendix
A.2.

The POSIX File System Test Suite is used as part of the
quality assurance process of the NTFS-3G NTFS driver for
Linux. As such, it tests many file system corner cases for
compliance. After successfully running the tests on the bare
Linux VM as a sanity check, we ran the suite of tests inside
Alcatraz run as superuser. As can be seen in the results for
this test, Alcatraz does not do very well.

This suite specifically tests 12 system calls: chflags, chmod,

chown, link, mkdir, mkfifo, open, rename, rmdir, sym-

link, truncate, and unlink. As this suite is not meant
specifically for Alcatraz as our tests in Case Study 1 were,
these tests tell us nothing about the commit behavior of
operations, only whether they appear to be functioning cor-
rectly from within the SEE. The tests mostly work by run-

ning these system calls and checking their return values.

Alcatraz causes the test suite to hang for 11/12 of the system
calls, and once the offending subtests were removed, Alca-
traz failed 20-80% of the tests for each system call (aside
from chflags, the only test Alcatraz completely passed).

The chflags tests plays to Alcatraz’s strengths. Every test
consists of creating a file or directory, changing some flags,
and then unlinking. Since this all happens within the SEE
to files created in the SEE, Alcatraz does well.

A random sampling of its failings shows Alcatraz failing for a
very wide assortment of reasons, with some repeat offenders
including incorrect behavior on really long path names, not
updating ctime correctly for some calls, and a large number
of chmod errors (since many of the other tests besides chmod
use chmod in the course of their tests).

The main takeaway from this case study, and what we should
have perhaps known from Case Study 1, is that the Alca-
traz implementation is not ready for as rigorous a test suite
as this, as Alcatraz fails much simpler tests. Failing the
POSIX File System Test Suite is further evidence of Alca-
traz not meeting its goals of transparency and application-
friendliness, and indicates trouble ahead for running real
applications in Alcatraz.

2.3.3 Case Study 3
A common usage of a system like Alcatraz (if it were widely
used) would be to test installation of new programs. In
this case study we attempt to install and run a common
program (Vim 7.2) in a directory local to the user, from
within Alcatraz. This requires the following:

1. bunzip vim-7.2.tar.bz2

2. tar -xf vim-7.2.tar

3. cd vim-7.2/; ./configure -prefix=<localdir>

4. make

5. make install

In our test, all of these were successful from within the SEE
except for the ./configure ... step. Suspiciously in the
ACSAC 2003 paper [15] all of these above steps are tested
except for the ./configure step. We also have to skip the
config step in Experiment 3 where we run similar perfor-
mance tests.

After completing these steps (cheating by performing con-

figure outside the SEE), we were able to run Vim 7.2 from
within Alcatraz.

2.3.4 Experiment 1
The full results from this case study can be seen in Appendix
A.3.

In this experiment, we examine each Load Type and see
if System Type = {bare, etrace, alcatraz} is a significant
factor. As you can see, for all Load Types the p-value for
System Type is < .0001, so we can say that System Type is
a significant factor for Performance with 95% confidence for
all Load Types.

3

Then looking at the Tukey HSD tests, we can say with 95%
confidence that performance for all three System Type levels
(bare, etrace, and alcatraz) are different for the read and
write Load Types. For the other Load Types, the bare
system performs significantly better than the other two, but
etrace and alcatraz don’t perform significantly differently at
α = 0.05.

When performing our analysis we ran across three signif-
icantly outlying points (out of 1260 for this test) that we
retook. We believe these were anomalies of the Iozone out-
put, however.

0

10

20

30

40

50

P
e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

b
a
re

/
e
tr

a
c
e

b
a
re

/
a
lc

a
tr

a
z

read write reread rewrite random read random write

Load Type

Figure 1: Performance Overhead

Figure 1 is a plot of the performance overheads we calcu-
late in this experiment. This figure shows the performance
overhead (bare performance / etrace performance, and bare
performance / alcatraz peformance) for the same file system
loads next to each other. The overhead for a point is nor-
malized with an“apples to apples”normalization—for exam-
ple, the alcatraz performance measurement for the “random
write” load, 64 MB record size, and 512 MB file size is di-
vided by the bare performance measurement for those same
values. The grey line near the bottom demarks 1, where the
etrace or alcatraz performance is exactly the same as the
bare performance for the same values of the independent
variables.

This side-by-side scatterplot tells us things that an average
would not. It shows the wide range of overheads we see,
but yet we can see that “write” and “rewrite” actually suffer
the least from overhead even though “write” is the slowest
performing file system load in an absolute sense. Ignoring
the extremely high “reread” outlier (corresponding to a 512
kB file size and an 8 kB record size) the other file system
loads appear to have similar ranges.

Our overhead values for etrace range from less than 0.2 to

greater than 22, and our overhead values for alcatraz range
from < 0.4 to over 47. Though the extreme values are likely
anomalies and testing noise, this is still a much greater range
than the (1, 2) range displayed in the ACSAC 2003 [15]
paper.

2.3.5 Experiment 2
The full results of this experiment can be seen in Appendix
A.4.

This experiment was run simultaneously with Case Study
3. Case Study 3 was intended to determine if you could
run common applications in Alcatraz, while this experiment
tests whether the system independent variable (isolation)
is a significant factor in real applications. As you can see
in the Appendix, for all four application types, system is a
significant factor at α = 0.05.

In the most computationally-bound test, bzip, the bare sys-
tem performs significantly differently from alcatraz, but nei-
ther perform significantly differently from etrace. However,
in all other tests (which are more file-system intensive) both
alcatraz and etrace perform significantly differently, and in
the most file-system intensive tests (make and makeinstall),
all three perform significantly differently.

3. ONE-WAY ISOLATION ON A COMMOD-
ITY PLATFORM

Mac OS X is, by far, the UNIX-like OS with the most run-
ning hosts. Additionally, many customer segments that Mac
OS X targets are end users that do not have the technical
expertise (or motivation) to analyze the behavior of a po-
tentially untrustworthy application. Thus, one way isolation
would be a valuable addition to Mac OS X’s capabilities.

Alcatraz is written on top of Etrace, so porting Alcatraz to
Mac OS X implies porting Etrace to Mac OS X.

To port Etrace to a new platform, one extends the class
ArchDep with concrete implementations of tracing functions
to attach to a process, read/write process state and memory,
wait for the next system call of the process, and so forth.
Etrace is essentially an extended object-oriented wrapper of
the UNIX ptrace facility.

Our attempts to port Alcatraz and Etrace to Mac OS X
v10.5 were unsuccessful, because Apple has deliberately ob-
structed invasive system tracing on Mac OS X. This is dis-
cussed further in section 5.

4. INTERPOSING MAC OS X SYSTEM CALLS
We analyzed the path of a system call from user code through
user libraries [6, 7] and the kernel [8] to locate “hooks” into
this system call path. The details of the system call sequence
are in appendix B.

Here, we briefly recount the various mechanisms one might
use to insert an Alcatraz-like facility into a UNIX system,
and how Mac OS X’s current state prevents their use.

4.1 ptrace

4

ptrace is what the existing Linux variant of Etrace is based
upon, so it is a natural starting point. The Linux-specific
PTRACE_SYSCALL request is not implemented in Mac OS X,
not surprisingly. However, it was a surprise to find that
the read/write memory and process state requests had been
removed. (Those requests have been in ptrace since it was
added to UNIX 6th edition in 1975.) Mac OS X ptrace

is only capable of single-stepping or resuming the traced
process.

4.2 Other kernel level trace facilities
Mac OS X has two other tracing facilities that are informed
of system calls (as our system call analysis determined).
These are the BSD ktrace and the audit subsystem. Fur-
ther analysis of these determined the were both unsuitable
for because they were not capable of altering system call ar-
guments. Additionally, ktrace was removed from Mac OS
X v10.5; and the audit subsystem does not receive control
directly—events are passed to it via a queue.

4.3 Kernel extension
Another possibility to gain access to the system call path
would be to write a kernel extension (KEXT) [3, 1] which
redirects entries in the system call dispatch table, sysent,
to itself. This method of interposition was feasible on earlier
versions of Mac OS X, but as part of a new kernel–KEXT
interface introduced in Mac OS X v10.4, the sysent symbol
was hidden from KEXTs. Unfortunately, the new kernel-
KEXT interface does not provide for system call interposi-
tion [5].

There are published means of “guessing” the location of the
sysent table based on other symbols, but we rejected use of
these as too brittle and potentially quite unsafe.

4.4 DTrace
Sun’s extensive DTrace facility [10] was ported to Mac OS
X v10.5. Apple added an elaborate user interface, called
Instruments to DTrace. DTrace and Instruments provide
wide-ranging, expressive, and detailed tracing functions for
user and kernel mode code, including system call tracing.
However, the same obstacles that we found with ktrace ap-
ply to DTrace — there is no way to modify system call
arguments, only read them.

Interestingly, DTrace traces system calls using the method
we investigated previously: interposing by redirecting sys-
tem call entries in the sysent table. DTrace has access to
sysent since it is complied into the kernel before the symbol
is stripped.

4.5 DYLD_INSERT_LIBRARIES
Failing to find a viable kernel-level interposition method, we
investigated several possibilities on the user mode side of the
system calls. This approach is only justifiable under the as-
sumption that the program being isolated is not attempting
to subvert the isolation; i.e., the suspect program has a very
limited level of malevolence.

Mac OS X’s dynamic linker/loader, dyld [4], provides a func-
tion designed to override modules in dynamic libraries, in-
voked by defining the environment variable DYLD_INSERT_LIBRARIES.

Unfortunately, this has several shortcomings: 1) dyld specif-
ically disables this for setuid and setgid programs. 2) It
only works for “flat namespace” images. Modern Mac OS X
images are not flat, but “two level”. One can force two-level
images to be treated as flat, but that causes many programs
to fail. 3) It is fairly easy to defeat.

4.6 libSystem
Two options we briefly considered were supplying a replace-
ment version of libSystem or dyld. Examination of kernel
source code revealed that these are both loaded by explicit
references to their file system location, not by using any
search paths, so our replacement files would have to overlay
the originals. Since modifying core system files is the type
of behavior this project is trying to prevent, we viewed it as
hypocritical to take this approach and therefore discarded
it.

5. SECURITY TENSIONS IN A COMMER-
CIAL OS

Paradoxically, in this work, our progress was impeded by OS
design decisions made to serve other security goals. Mac OS
X v10.5’s kernel has been secured, as described previously in
the paper, to prevent “hooking” of system calls presumably
for two reasons:

1. To increase the difficulty of writing malware (viruses,
rootkits, etc.).

2. To increase the difficulty of subverting digital rights
management (DRM) schemes, such as those embedded
in iTunes.

Providing OS extensibility in a manner that does not also
open attack vectors is a problem for future work. We address
DRM below.

5.1 DRM’s Needs
DRM entails a software publisher relying on invariants es-
tablished in its software while that software is running on
platforms under the control of others.

Assuming “a person having physical access to the hardware
has absolute control of the machine”, then DRM cannot be
fully solved. There will always be some level at which the
DRM can be subverted. The largest deployer of DRM in
the world, Apple, has said “DRMs haven’t worked, and may
never work” [14].

However, publishers are satisfied with making DRM difficult
to subvert rather than absolutely secure.

Hereinafter, let us assume the DRM of concern is media
content DRM, which we will define as protection of pas-
sive (non-executable) data which is transferred to the user’s
environment in a protected form, then transformed and pre-
sented to the user using the services of the user’s environ-
ment. In this case, DRM focuses on maintaining the data
in its protected form (usually encrypted), enforcing access
control, and then transforming and presenting the data only
across a trusted path. (This path recently has been extended
to video display devices, by using the HDCP scheme[12].)

5

Establishment of this trusted transform-and-present path
means that many conventional operating system functions,
such as I/O redirection, must be disabled or incapacitated.
This is the source of the tension — users want the full func-
tions of their environment, but DRM-using publishers want
to cripple users’ functions. In other words, does the plat-
form’s provision of “trusted components” mean trusted by
the user or trusted by third parties? When the user’s and
third parties’ wishes conflict, whom does the platform serve?
This raises ethical and legal questions, which are not exam-
ined here [17].

Computing has a number of solutions to the secure informa-
tion transfer problem, for example TLS/SSL for secure in-
formation transfer over TCP/IP. In this situation, the prob-
lem is to move data from one trusted endpoint to another
while not disclosing the information to other (untrusted) ob-
servers. In contrast to this problem, DRM’s purpose is to
reveal the information to the (untrusted) user, but to do so
with a number of constraints. For example, iTunes ensures
that the movie the user has purchased is only viewed from
the purchaser’s computer or iPod. This attempt to control
disclosure leads to problems such as those that prompted
HDCP. A user could play an iTunes movie into a digital
video recorder (software or hardware), and end up with a
near perfect copy of the protected movie. HDCP attempts
to avert this by requiring authentication of the display hard-
ware.

Since DRM software relies on the OS to communicate with
the display hardware, it requires a trusted path through the
OS. This is where we cross paths with DRM. This project,
and many other systems projects require the ability to redi-
rect I/O and otherwise change the behavior of systems func-
tions. DRM attempts to “hard code” the endpoints of its
output, so as to prevent misuse of its content while still al-
lowing users to use the content in certain ways.

5.2 Current State in Mac OS X
A threat to DRM is normal debugging tools. This threat is
twofold:

1. The protected data could easily be inspected during its
transit through the trusted path using system tracing
tools such as dtruss.

2. The protection scheme, which generally uses encryp-
tion, can be inspected and its private keys compro-
mised using common debugging tools such as gdb.

Mac OS X v10.3 introduced the PT_DENY_ATTACH request to
the ptrace system call as a defense to the second threat.
This is known to be an imperfect defense, which Apple calls
a “cat-and-mouse game” of private key breach and protec-
tion [14]. To prevent simple subversion of PT_DENY_ATTACH,
Apple has removed the ability to hook system calls. In more
recent versions of Mac OS X, system call tracing is prohib-
ited on all processes that have requested PT_DENY_ATTACH.

Basically, PT_DENY_ATTACH has become a flag indicating that
the process wants to exempt itself from multiple standard
system capabilities deemed threatening to DRM. However,
these are the capabilities needed for debugging and security
analysis. And ironically, programs using DRM have proven

to be one of the least trustworthy (by the user) categories
of software. (For example, review the security and privacy
breaches committed by Real Networks and Sony BMG.) A
broad “you can’t look here; you must just trust me” flag is
not an acceptable solution.

5.3 A Way Out?
Observe that the present solution is overconstraining relative
to the needs. The needs can be specified as:

1. Protection secrets (i.e., private keys) must remain con-
fidential — not known outside of the owning process.

2. The data streaming through the trusted transform-
and-present path must only end up on certain “allow-
able” types of devices.

For the first requirement, PT_DENY_ATTACH is unnecessarily
broad. While debugger commands that inspect the state
of certain threads and the process address space should be
disabled during the presence of private keys, other debugger
commands, such as the ability to pause process execution
need not be disabled, Additionally, the part of the process
needing protection is quite small compared to the whole ap-
plication.

The needed confidentiality could be implemented by extend-
ing the basic mandatory access control scheme now present
in most OSes [22, 16] (including Mac OS X v10.5) with 1) la-
bels, 2) the ability to label address spaces and thread state,
and 3) a policy regarding these labels that is not reconfig-
urable by the user.

In the second requirement, the allowable devices are those
that do not record the data they are presenting. We will call
these ephemeral endpoints. Examples are video displays,
speakers, and so forth. We will call recording endpoints
stable endpoints.

If processes can declare output streams as requiring ephemeral
endpoints, and trust the operating system to enforce this
requirement, then other activities of the process could be
treated “normally”. Note that this level of trust in the OS
would be no higher than the processes presently rely upon
for their output streams.

An implementation approach is similar to the first require-
ment: extend existing mandatory access control facilities
with 1) labels, 2) the ability to label output streams, and
3) non-reconfigurable policies. With this, the OS could even
allow user-controlled redirection of output, but still enforce
the requirement that DRMed output streams not flow to a
stable endpoint.

6. RELATED WORK
Our original plan was to develop an isolation environment
very much like Alcatraz, until we discovered it had already
been done in Alcatraz and in the systems listed below.

Solitude. Solitude [13] is a system very similar to Alcatraz
out of the University of Toronto, possibly inspired by Alca-
traz. In addition to a one-way isolation file system, Solitude
adds the ability to do taint-tracking on files after the user

6

has committed them to the base file system (in case some-
thing still goes wrong later).

We first attempted to use this system as the basis of our
work, but when we finally got the source code it was in a non-
working state, was essentially one giant C source file, and
when the providing professor had last tried it, it had “hosed”
his file system. Needless to say, we chose to base our work
on Alcatraz due to its availability, its clean architecture, and
its ability to compile.

Alcatraz 2?. The group from Stony Brook University that
produced Alcatraz described what seems to be a kernel im-
plementation of it in an NDSS paper in 2005 [23]. We origi-
nally assumed that was the system in the current release of
Alcatraz, but we later found that not to be the case. After
corresponding with the Alcatraz group, we were told that
the NDSS system was a “different” system that nobody was
keeping track of anymore.

Unfortunately it seemed to be a more advanced version of
Alcatraz that addressed many of its problems and provided
more advanced commit algorithms.

ReVirt. The ReVirt system out of the University of Michi-
gan was one of the first systems we looked at. ReVirt is a
virtual machine solution to this problem of isolation—their
system runs underneath the operating system. We rejected
this system because it does not solve the problem we were ex-
amining. ReVirt provides isolation at the operating system
level (not application), and it focuses on logging, roll-back,
and replay of intrusions for an entire VM.

7. FUTURE WORK
This project has suggested several avenues of future work
to us. The first, and most obvious, is to fix Alcatraz. We
managed to break the current system (at least its current
implementation) in a number of ways, and the POSIX File
System Test Suite uncovers many other problems. It could
still be a useful system if it really provided one-way isolation
and it was not too difficult to run experimental applications
in it.

More experimental work could also be done. One avenue for
this is to evaluate Solitude in the same way that Alcatraz was
evaluated, and then additionally compare their performance
they way we originally intended to compare a Linux and
OS X version of Alcatraz. This could also be done with
the NDSS 2005 system if we could get source code—there
would be a clear goal when evaluating this system, as it is
intended to be an improved successor to Alcatraz. Does it
significantly improve performance and usability?

A more ambitious idea was suggested to us by our Design
Review team. A system like Alcatraz could be used to allow
a user to masquerade as having (mainly write) root permis-
sions to an application that insists on having root access.
Some applications could be fooled well enough to run, and
one of our reviewers said he had a need for something like
this right now.

Another possible future project is to implement a new one-
way program isolation environment based on the facilities
present in Mac OS X v10.5 and in the OS’s apparent di-
rection. This would likely use the kauth or Seatbelt access
control functions and a VFS plug-in. Note that Mac OS X’s
VFS does not support stacking file systems [2], but Mac-
FUSE does.

8. CONCLUSIONS
We continue to believe that one-way isolation of user pro-
grams is an important security feature for modern operating
systems.

The system examined here, Alcatraz, is not the solution to
providing this feature. The performance overhead can be un-
acceptable in routine situations and file system operation se-
mantics are not preserved. However, Alcatraz demonstrates
the feasibility of one-way isolation of user programs.

In our attempts to port Alcatraz to Mac OS X, we observed
that the various security goals present in a modern commod-
ity operating system can be at odds with each other, imped-
ing overall progress on adding security facilities. DRM is
a factor in this, but not the only driver of these conflicting
goals. In this case, DRM and one-way isolation are not mu-
tually exclusive, and we have proposed one alternative to
preserving system adaptability properties while still serving
the trusted platform needs of DRM.

A substantially different approach to implementing one-way
isolation is probably feasible, as discussed in the Future
Work section.

We encourage continued work on integration of one-way iso-
lation into commodity platforms.

9. ACKNOWLEDGMENTS
We would like to thank Professor R. Sekar from Stony Brook
University and Professor Ashvin Goel from the University
of Toronto for providing us with source code. We would also
like to thank Drake Dowsett, Joel Hestness, and Professor
Mike Dahlin for reviewing earlier iterations of this work.

10. REFERENCES
[1] Apple Inc. Kernel Programming Guide.

http://developer.apple.com/documentation/

Darwin/Conceptual/KernelProgramming/, 2006.

[2] Apple Inc. Technical Q&A QA1242: Developing for
VFS. http:
//developer.apple.com/qa/qa2001/qa1242.html,
2006.

[3] Apple Inc. Kernel Extension Programming Topics.
http://developer.apple.com/documentation/

Darwin/Conceptual/KEXTConcept/, 2007.

[4] Apple Inc. dyld-96.2. Darwin Source Code.
http://www.opensource.apple.com/darwinsource/

10.5.5/dyld-96.2/, 2008.

[5] Apple Inc. Kernel Framework Reference.
http://developer.apple.com/documentation/

Darwin/Reference/KernelIOKitFramework/, 2008.

[6] Apple Inc. Libc-498.1.1. Darwin Source Code.
http://www.opensource.apple.com/darwinsource/

7

http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/
http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/
http://developer.apple.com/qa/qa2001/qa1242.html
http://developer.apple.com/qa/qa2001/qa1242.html
http://developer.apple.com/documentation/Darwin/Conceptual/KEXTConcept/
http://developer.apple.com/documentation/Darwin/Conceptual/KEXTConcept/
http://www.opensource.apple.com/darwinsource/10.5.5/dyld-96.2/
http://www.opensource.apple.com/darwinsource/10.5.5/dyld-96.2/
http://developer.apple.com/documentation/Darwin/Reference/KernelIOKitFramework/
http://developer.apple.com/documentation/Darwin/Reference/KernelIOKitFramework/
http://www.opensource.apple.com/darwinsource/10.5.5/Libc-498.1.1/

10.5.5/Libc-498.1.1/, 2008.

[7] Apple Inc. Libsystem-111.1.1. Darwin Source Code.
http://www.opensource.apple.com/darwinsource/

10.5.5/Libsystem-111.1.1/, 2008.

[8] Apple Inc. xnu-1228.7.58. Darwin Source Code.
http://www.opensource.apple.com/darwinsource/

10.5.5/xnu-1228.7.58/, 2008.

[9] S. Bellwood. Some VMware Images. http:
//www.thoughtpolice.co.uk/vmware/#centos4.6,
Referenced December 2008.

[10] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic
instrumentation of production systems. In USENIX
Annual Technical Conference, pages 15–28, 2004.

[11] P. J. Dawidek and NTFS-3G Technology Ltd. POSIX
File System Test Suite, Stable release 20080816.
http://www.ntfs-3g.org/pjd-fstest.html, Released
August 16, 2008.

[12] Intel Corporation. High-bandwidth Digital Content
Protection System. http://www.digital-cp.com/,
2006.

[13] S. Jain, F. Shafique, V. Djeric, and A. Goel.
Application-level isolation and recovery with solitude.
In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008,
pages 95–107. ACM New York, NY, USA, 2008.

[14] S. Jobs. Thoughts on Music.
http://www.apple.com/hotnews/thoughtsonmusic/,
Feb 2007.

[15] Z. Liang, V. N. Venkatakrishnan, and R. Sekar.
Isolated Program Execution: An Application
Transparent Approach for Executing Untrusted
Programs. In Proceedings of Annual Computer
Security Applications Conference, 2003.

[16] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pages 29–42,
Berkeley, CA, USA, 2001. USENIX Association.

[17] D. K. Mulligan and A. K. Perzanowski. The
Magnificence of the Disaster: Reconstructing the Sony
BMG Rootkit Incident. Berkeley Technology Law
Journal, 22:1157, 2007.

[18] W. D. Norcott. Iozone Filesystem Benchmark.
http://www.iozone.org/, Last Updated: Oct 28th
16:00:00 EST 2006.

[19] Secure System Lab, Stony Brook University. Etrace.
Technical report, 2005.

[20] Secure System Lab, Stony Brook University. Alcatraz.
http://www.seclab.cs.sunysb.edu/alcatraz/,
Referenced December 2008.

[21] Secure System Lab, Stony Brook University. Etrace.
http://www.seclab.cs.sunysb.edu/etrace/,
Referenced December 2008.

[22] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The flask security
architecture: system support for diverse security
policies. In SSYM’99: Proceedings of the 8th
conference on USENIX Security Symposium, pages
11–11, Berkeley, CA, USA, 1999. USENIX
Association.

[23] W. Sun, Z. Liang, R. Sekar, and V. Venkatakrishnan.

One-way Isolation: An Effective Approach for
Realizing Safe Execution Environments. In
Proceedings of the 12th Annual Symposium on
Network and Distributed System Security, volume 12,
pages 265–278. Internet Society, 2005.

8

http://www.opensource.apple.com/darwinsource/10.5.5/Libc-498.1.1/
http://www.opensource.apple.com/darwinsource/10.5.5/Libsystem-111.1.1/
http://www.opensource.apple.com/darwinsource/10.5.5/Libsystem-111.1.1/
http://www.opensource.apple.com/darwinsource/10.5.5/xnu-1228.7.58/
http://www.opensource.apple.com/darwinsource/10.5.5/xnu-1228.7.58/
http://www.thoughtpolice.co.uk/vmware/#centos4.6
http://www.thoughtpolice.co.uk/vmware/#centos4.6
http://www.ntfs-3g.org/pjd-fstest.html
http://www.digital-cp.com/
http://www.apple.com/hotnews/thoughtsonmusic/
http://www.iozone.org/
http://www.seclab.cs.sunysb.edu/alcatraz/
http://www.seclab.cs.sunysb.edu/etrace/

APPENDIX
A. FULL EXPERIMENTAL RESULTS
A.1 Case Study 1: Targeted Study Tests
W? = Works/Fails as it should?

C? = Commits/Doesn ’t as it should?

B? = Broken?

Possible values are Y = yes , N = no, ~ = partial

NO FS MODIFICATION

Test W? C? B? Notes

--

ls ~ Y Y Can ’t ls ’/’, ’/dev ’, ’/tmp/Alcatraz .5005’, works for

most. Just broken.

stat Y Y Works even on ’/’ and ’/dev ’

cat Y Y ’cat /usr/share/dict/words ’

grep Y Y ’grep foo /usr/share/dict/words ’

find Y Y ’find /home/notroot -name *.txt -print ’

pipe Y Y ’cat /usr/share/dict/words | grep foo | head ’

ping N Y Fails as advertised. ’ping www.google.com ’

nc N N ’nc localhost 3000’ Fails as advertised with "Operation

not permitted" with server running

unix -socket N N Fails as advertised. "Operation not permitted" on socket

connect to socket created in /tmp

dev/zero N N ’cat /dev/zero ’ Operation not permitted as advertised.

dev/random N N ’cat /dev/random ’ Operation not permitted as advertised.

dev/urandom Y Y Y ’cat /dev/urandom ’ Works? Inconsistent.

kill alc. N Y ’kill 13097’, ’kill -9 13097’, ’killall alcatraz ’. Fails as

advertised

kill etrace N Y ’kill 13097’, ’kill -9 13097’, ’killall etrace ’. Fails as

advertised.

kill out N Y ’kill 13097’, ’kill -9 13097’, ’killall top ’. Fails as

advertised.

kill within Y Y ’kill 14271 ’ where 14271 is top run within SEE

renice in Y Y ’renice +1 14271 ’ to process inside of SEE

renice out Y Y Y ’renice +1 14524 ’ to process outside of SEE. Breaks

one -way isolation.

su N N Y Produces ptrace error and "Operation not permitted" and

"su: incorrect password ". Not ’transparent.’

xclock Y Y ’xclock -display :2’ after outside ’Xnest -ac :2’. Not

really transparent.

FS MODIFICATION

Test W? C? B? Notes

--

create+ls ~ Y ’touch foo; ls -l’ prints the error message ’ls: foo: No

such file or directory ’ before proceeding to correctly

list the directory (including foo).

touch Y Y ’touch foo ’ and ’touch /tmp/foo ’

cp Y Y ’cp foo foo2 ’ w/foo existing

mkdir Y Y ’mkdir foodir ’ and ’mkdir /tmp/foodir ’

dirmod1 Y Y Using existing directory ’foo ’, add a file outside the

see and a different file inside the SEE.

mkfifo Y Y ’mkfifo foofo ’ and ’mkfifo /tmp/foofo ’

symlink Y Y ’ln -s ../foo ’ and ’echo "bar" >> foo"

hardlink ~ ~ Y Using existing file ’../foo ’, ’link ../foo bar ’. Appears

to work , contents of both agree. However ’stat ../foo ’

and ’stat ../bar ’ both show ’Links: 1’ Modifying the

contents of either does not affect the other. Appears to

commit correctly , and the new link appears. However ,

both ’stat ’ on both files still shows "Links: 1" and

modifying one does not modify the other.

9

touch+chmod Y Y ’touch foo; chmod 700 foo ’

chmod N N Y ’chmod 700 foo ’ with foo already existing. Ignores

command. Broken.

chown N N Y ’chown root foo ’ produces "Operation not permitted ".

Broken.

chgrp N N Y ’chgrp root foo ’ produces "Operation not permitted ".

Broken.

overwrite Y Y ’cat /usr/share/dict/words > foo ’ w/foo existing

append Y Y ’echo "test" >> foo ’ w/foo existing

file rename Y Y ’mv foo bar ’. Commits as a delete plus a create.

dir rename N N Y ’mv foodir bardir ’ to existing dir foodir fails with "mv:

cannot move ‘foodir ’ to ‘bardir ’: Is a directory

conflict1 Y Y ~ Using existing file ’foo ’, write to it within SEE (causes

copy -on-write), write to it outside SEE (writes to

original). Shows modification at commit time , I hit

commit , says "/home/notroot/foo Modified! Discarding

changes ..." and throws away modifications from within

SEE. Inconsistent with conflict2!

conflict2 Y Y ~ Using existing directory ’foodir ’, create a file

’foodir/bar ’ within the SEE , add contents , create a file

’foodir/bar ’ outside the SEE with different contents.

Commits fine and overwrites changes from outside SEE.

Inconsistent with conflict1!

fifo -comm Y N Y Using existing fifo ’foofo ’, from inside SEE ’cat

/usr/share/dict/words > foofo ’, and outside SEE ’cat

foofo ’. Breaks one -way isolation. Shows nothing at

commit time.

/proc ~ ~ Y ’echo 100000 > /proc/sys/fs/file -max ’. Works within SEE

and is not visible outside SEE. Shows up in changes

summary , but error on commit "mv: inter -device move

failed ...; unable to remove target: Operation not

permitted ". Broken implementation.

dbus N N in python , ’import dbus; d = dbus.SessionBus ()’ fails on

connect to UNIX socket. As advertised , but makes life

difficult for some UNIX apps.

A.2 Case Study 2: POSIX File System Test Suite
Tests that hang:

chflags - all pass

chmod - 06 hangs

chown - 06 hangs on 2/6

link - 00 hangs on 29/82

- 10 hangs on 11/14

- 08 hangs on 2/10

mkdir - 07 hangs on 2/6

mkfifo - 07 hangs on 2/6

open - 12 hangs on 2/6

rename - 00 hangs on 26/79

- 11 hangs on 2/10

rmdir - 05 hangs on 2/6

symlink - 07 hangs on 2/6

truncate - 07 hangs on 2/6

unlink - 00 hangs on 19/55

- 07 hangs on 2/6

Summarized output of tests (skipping the above tests that hang):

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/chflags

All tests successful.

Files=14, Tests=14, 2 wallclock secs (0.56 cusr + 0.58 csys = 1.14 CPU)

10

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/chmod

Failed 7/11 test scripts , 36.36% okay. 30/136 subtests failed , 77.94% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/chown/

Failed 6/10 test scripts , 40.00% okay. 56/227 subtests failed , 75.33% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/link

Failed 8/15 test scripts , 46.67% okay. 40/103 subtests failed , 61.17% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/mkdir

Failed 6/12 test scripts , 50.00% okay. 21/99 subtests failed , 78.79% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/mkfifo/

Failed 8/12 test scripts , 33.33% okay. 28/99 subtests failed , 71.72% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/open

Failed 9/23 test scripts , 60.87% okay. 70/218 subtests failed , 67.89% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/rename/

Failed 18/19 test scripts , 5.26% okay. 7/9 subtests failed , 22.22% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/rmdir/

Failed 8/15 test scripts , 46.67% okay. 26/111 subtests failed , 76.58% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/symlink/

Failed 8/12 test scripts , 33.33% okay. 28/85 subtests failed , 67.06% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/truncate/

Failed 5/14 test scripts , 64.29% okay. 16/85 subtests failed , 81.18% okay.

sh -3.00# prove -r /home/notroot/src/pjd -fstest -20080816/ tests/unlink

Failed 6/12 test scripts , 50.00% okay. 32/86 subtests failed , 62.79% okay.

11

A.3 Experiment 1: Targeted File System Loads
A.3.1 Load Type = read
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 183488605 1747511 31.1094
Error 104 5841993 56173 Prob > F
C. Total 209 189330597 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 119067480 1059.828 <.0001
File Size 13 13 21291907 29.1570 <.0001
Record Size 4 4 18559831 82.6012 <.0001
System Type*File Size 26 26 16614255 11.3757 <.0001
System Type*Record Size 8 8 2750626 6.1209 <.0001
File Size*Record Size 52 52 5204506 1.7818 0.0065

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 2103.4493 28.327928 2103.45
etrace 578.6032 28.327928 578.60
alcatraz 442.3721 28.327928 442.37

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 2103.4493
etrace B 578.6032
alcatraz C 442.3721

Levels not connected by same letter are significantly different.

12

A.3.2 Load Type = write
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 4612831.9 43931.7 20.8454
Error 104 219180.3 2107.5 Prob > F
C. Total 209 4832012.2 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 503464.6 119.4458 <.0001
File Size 13 13 2231522.9 81.4497 <.0001
Record Size 4 4 1118906.8 132.7290 <.0001
System Type*File Size 26 26 178262.7 3.2533 <.0001
System Type*Record Size 8 8 140504.9 8.3336 <.0001
File Size*Record Size 52 52 440169.8 4.0165 <.0001

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 288.78884 5.4870019 288.789
etrace 207.87229 5.4870019 207.872
alcatraz 171.66303 5.4870019 171.663

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 288.78884
etrace B 207.87229
alcatraz C 171.66303

Levels not connected by same letter are significantly different.

13

A.3.3 Load Type = reread
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 264617977 2520171 15.5527
Error 104 16852284 162041 Prob > F
C. Total 209 281470261 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 164571184 507.8066 <.0001
File Size 13 13 31985259 15.1838 <.0001
Record Size 4 4 21489402 33.1542 <.0001
System Type*File Size 26 26 32194573 7.6416 <.0001
System Type*Record Size 8 8 5022139 3.8741 0.0005
File Size*Record Size 52 52 9355419 1.1103 0.3216

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 2398.1077 48.113140 2398.11
etrace 561.2983 48.113140 561.30
alcatraz 481.6431 48.113140 481.64

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 2398.1077
etrace B 561.2983
alcatraz B 481.6431

Levels not connected by same letter are significantly different.

14

A.3.4 Load Type = rewrite
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 32101803 305731 10.3688
Error 104 3066528 29486 Prob > F
C. Total 209 35168332 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 12161889 206.2326 <.0001
File Size 13 13 8979330 23.4254 <.0001
Record Size 4 4 3542176 30.0328 <.0001
System Type*File Size 26 26 3577689 4.6668 <.0001
System Type*Record Size 8 8 1318706 5.5904 <.0001
File Size*Record Size 52 52 2522013 1.6449 0.0162

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 851.67259 20.523802 851.673
etrace 358.32091 20.523802 358.321
alcatraz 325.59560 20.523802 325.596

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 851.67259
etrace B 358.32091
alcatraz B 325.59560

Levels not connected by same letter are significantly different.

15

A.3.5 Load Type = random read
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 241057911 2295790 31.0379
Error 104 7692600 73967 Prob > F
C. Total 209 248750511 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 158971146 1074.604 <.0001
File Size 13 13 22185792 23.0723 <.0001
Record Size 4 4 24154012 81.6375 <.0001
System Type*File Size 26 26 24966985 12.9823 <.0001
System Type*Record Size 8 8 4839580 8.1786 <.0001
File Size*Record Size 52 52 5940394 1.5444 0.0309

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 2226.3798 32.506551 2226.38
etrace 419.0594 32.506551 419.06
alcatraz 344.5993 32.506551 344.60

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 2226.3798
etrace B 419.0594
alcatraz B 344.5993

Levels not connected by same letter are significantly different.

16

A.3.6 Load Type = random write
Response Performance (MB/s)

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 105 63637110 606068 22.6845
Error 104 2778597 26717 Prob > F
C. Total 209 66415707 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F
System Type 2 2 30009465 561.6116 <.0001
File Size 13 13 14302134 41.1780 <.0001
Record Size 4 4 4839567 45.2850 <.0001
System Type*File Size 26 26 11156234 16.0602 <.0001
System Type*Record Size 8 8 1091905 5.1086 <.0001
File Size*Record Size 52 52 2237804 1.6107 0.0202

Effect Details, System Type

Least Squares Means Table

Level Least Sq Mean Std Error Mean
bare 1093.6324 19.536515 1093.63
etrace 307.1972 19.536515 307.20
alcatraz 277.0948 19.536515 277.09

LSMeans Differences Tukey HSD
α = 0.050 Q = 2.37776

Level Least Sq Mean
bare A 1093.6324
etrace B 307.1972
alcatraz B 277.0948

Levels not connected by same letter are significantly different.

17

A.4 Experiment 2: Real Applications

1

2

3

4

5

6

7

8

9

10

ti
m

e
 (

s
)

bare etrace alcatraz

system

All Pairs

Tukey-Kramer

0.05

system

Error

C. Total

Source

2

27

29

DF

30.63766

97.48711

128.12477

Sum of

Squares

15.3188

3.6106

Mean Square

4.2427

F Ratio

0.0250*
Prob > F

Analysis of Variance

Oneway Anova

alcatraz

etrace

bare

Level

A

A

B

B

4.4252000

2.8289000

1.9886000

Mean

Levels not connected by same letter are significantly

di!erent.

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of time By system app=bzip

0

1

2

3

4

5

6

7

8

9

10

11

ti
m

e
 (

s
)

bare etrace alcatraz

system

All Pairs

Tukey-Kramer

0.05

system

Error

C. Total

Source

2

27

29

DF

170.91495

94.33747

265.25243

Sum of

Squares

85.4575

3.4940

Mean Square

24.4585

F Ratio

<.0001*
Prob > F

Analysis of Variance

Oneway Anova

alcatraz

etrace

bare

Level

A

A

B

5.9885000

4.6228000

0.3824000

Mean

Levels not connected by same letter are significantly

di!erent.

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of time By system app=tar

34

35

36

37

38

39

40

41

42

43

44

ti
m

e
 (

s
)

bare etrace alcatraz

system

All Pairs

Tukey-Kramer

0.05

system

Error

C. Total

Source

2

27

29

DF

308.64214

7.23007

315.87221

Sum of

Squares

154.321

0.268

Mean Square

576.2974

F Ratio

<.0001*
Prob > F

Analysis of Variance

Oneway Anova

alcatraz

etrace

bare

Level

A

B

C

43.435700

39.205400

35.586900

Mean

Levels not connected by same letter are significantly

di!erent.

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of time By system app=make

4

5

6

7

8

9

10

11

12

13

ti
m

e
 (

s
)

bare etrace alcatraz

system

All Pairs

Tukey-Kramer

0.05

system

Error

C. Total

Source

2

27

29

DF

314.60247

9.00302

323.60549

Sum of

Squares

157.301

0.333

Mean Square

471.7454

F Ratio

<.0001*
Prob > F

Analysis of Variance

Oneway Anova

alcatraz

etrace

bare

Level

A

B

C

12.445900

9.383700

4.577800

Mean

Levels not connected by same letter are significantly

di!erent.

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of time By system app=makeinstall

18

B. Mac OS X v10.5 SYSTEM CALL FLOW
When a user program invokes a system call that requires kernel processing, for example open(), the call flows through a
number of system components:

1. The programming language library (potentially).
2. The system’s run time library, known as libc on many UNIX variants.
3. The syscall stubs library, which invokes the software trap (on IA32, the SYSENTER instruction) to switch to kernel mode.
4. The kernel low-level support code, which receives the trap, saves the user mode state, sets up the kernel environment.
5. The kernel syscall handler, which marshals arguments and dispatches the call to the kernel function designated by the

syscall number passed from the syscall stub.

Note: On Mac OS X, libc and the syscall stubs library are subsumed by libSystem, sometimes referred to the System

framework.

The return path from the kernel function to the user program is through these same components in reverse (LIFO) order.

In the following, syscall name stands for the function name of the UNIX system call, such as open, chmod, or gettimeofday.
The procedure is given for Intel IA32 processes, but other processors (PowerPC and ARM) and 64 bit processes are handled
analogously.

Procedure 1. System call — user mode side

syscall name in the libc part of libSystem:
1: System call user mode wrapper code — if the system call needs it
__syscall name in __syscall name.s in the libsyscall part of libSystem:
2: EAX register ← syscall number (SYS_syscall name) to
3: Call __sysenter_trap
__sysenter_trap in libsyscall/custom/custom.s:
4: EDX register ← Return address
5: ECX register ← Stack pointer
6: SYSENTER (software trap to kernel mode)
7: if CF (carry flag) not set, then
8: return — syscall returned with no error

else — syscall returned with error code
9: Jump to cerror

cerror in libsyscall/custom/custom.s:
10: errno ← EAX register — Returned error code
11: Call cthread_set_errno_self(EAX)

12: EAX register ← -1 — Function return value
13: return

end if

Procedure 2. System call — kernel mode side

hi_sysenter in xnu/osfmk/i386/idt.s:
1: Save user mode state (stack pointer, segment base registers, general registers)
2: Restore kernel environment
lo_sysenter in xnu/osfmk/i386/locore.s:
3: if EAX < 0, then jump to Mach syscall handler end if
4: Switch to kernel stack and unmask interrupts
unix_syscall in xnu/bsd/dev/i386/systemcalls.c:
5: Get pointers to task, proc, caller registers, syscall args, etc.
6: Look up syscall number in sysent table
7: if this syscall takes args, then
8: copyin() args from userspace to kernelspace
9: if not a kdebug_trace syscall and kdebug enabled, then
10: write syscall start trace record to kdebug buffer

end if
11: Use syscall argument munger for this syscall (from sysent table) to normalize all syscall args to 64-bit process style layout

else

19

12: if kdebug enabled, then
13: write syscall start trace record to kdebug buffer

end if
end if

14: Set the thread’s kauth credentials to the proc’s
15: Set UT_NOTCANCELPT flag — thread cannot be canceled
16: if auditing enabled, then
17: write an syscall entry audit record

end if
18: Call the syscall function pointed to by the sysent record
19: if auditing enabled, then
20: write an syscall exit audit record

end if
21: if syscall function returned ERESTART, then
22: Decrement user thread’s EIP (instruction pointer) appropriately

end if
23: if syscall function returned EJUSTRETURN, then
24: User thread’s EAX register ← Return value

else
25: User thread’s EAX register ← Error code
26: User thread’s CF (carry flag) ← Set

end if
27: Clear UT_NOTCANCELPT flag — thread can be canceled again
28: if not a kdebug_trace syscall and kdebug enabled, then
29: write syscall end trace record to kdebug buffer

end if
thread_exception_return in xnu/osfmk/i386/locore.s:
30: Mask interrupts; switch stack pointer to PCB stack
return_from_trap in xnu/osfmk/i386/locore.s:
31: Check for pending asynchronous system traps, and call handlers
hi_ret_to_user in xnu/osfmk/i386/idt.s:
32: Restore user mode state (stack pointer, segment base registers, general registers)
33: Restore flags register (including carry flag)
34: Unmask interrupts
35: SYSEXIT

20

	Introduction
	Evaluation of Alcatraz
	Experimental Design
	Validity and Reproducibility
	Results
	Case Study 1
	Case Study 2
	Case Study 3
	Experiment 1
	Experiment 2

	One-way Isolation on a Commodity Platform
	Interposing Mac OS X System Calls
	ptrace
	Other kernel level trace facilities
	Kernel extension
	DTrace
	DYLD_INSERT_LIBRARIES
	libSystem

	Security Tensions in a Commercial OS
	DRM's Needs
	Current State in Mac OS X
	A Way Out?

	Related Work
	Future Work
	Conclusions
	Acknowledgments
	References
	Full Experimental Results
	Case Study 1: Targeted Study Tests
	Case Study 2: POSIX File System Test Suite
	Experiment 1: Targeted File System Loads
	Load Type = read
	Load Type = write
	Load Type = reread
	Load Type = rewrite
	Load Type = random read
	Load Type = random write

	Experiment 2: Real Applications

	Mac OS X v10.5 System Call Flow

